The FIR-Radio Correlation and Galaxy Halos

Eric J. Murphy (NRAO)

University of Richmond– July 2017

Far-Infrared (FIR) Emission from Galaxies M51 ≻ Re-radiated starlight by

interstellar dust grains

- Traces massive star formation
- Super position of modified blackbodies
 Temperature information

PACS 3-color image
 70 μm BLUE
 110 μm GREEN
 160 μm RED

© ESA & the PACS

Herschel-PACS

Hα

M51

Dumas et al. 2010

Radio Emission from Galaxies

- Combination of thermal and nonthermal radiation
 - > Both arise from massive star formation
- 20 cm (globally ~90% non-thermal)
 Synchrotron radiation from accelerated CR electrons by SNe
 - Discrete star-forming regions + SNRs on top of *diffuse disk*.
- 3.6 cm (globally ~30% thermal)
 Bremsstrahlung (free-free) radiation from star-forming regions
 Less of a diffuse component

FIR to Radio Spectral Energy Distribution (SED) of a Galaxy

Flux Densit

FIR – Radio Correlation: 1st order explanation (van der Kruit 1971/1973; de Jong et al. 1985; Helou et al. 1985)

 \triangleright

 \triangleright

Yun, Reddy, & Condon. (2001)

Spans ~5 orders of magnitude in galaxy luminosity

Driven by Massive Star Formation

- FIR Dust heated by Massive stars
 - > mfp of dust heating UV photons ~100 pc
- $\succ \quad \text{Radio} CRe \text{ accelerated by SNe in B-field}$
 - \succ CR*e* diffuse ~1 kpc

Radio image is smoother version of FIR image

(Some) of the Physics Involved

- ➢ FIR affected by:
 - > IMF
 - UV photon transport
 - Optical depth
 - Grain distribution/composition

Radio affected by:

- > IMF
- Acceleration Mechanisms
- Primary/Secondary e⁻
- Magnetic Field
- Transport diffusion & confinement
- How can FIR/Radio ratios of galaxies show such small scatter?

Using FIR/Radio Correlation to Characterize CR propagation

- Many studies on this topic, especially since Spitzer was launched:
 - SINGS Galaxies Murphy et al. (2006, 2008)
 - Piggy-backing off of original phenomenological model of Helou & Bicay (1993).
 - LMC Hughes et al. (2006), Murphy et al. (2012)
 - ▶ M51 Dumas et al. (2011)
 - M31, M33, N6946 Tabatabaei et al. (2007, 2010, 2013)
 - Above studies make use of wavelet cross correlations power at different spatial scales as a function of frequency.

Radio/Sync Cool Dust Warm Dust

FIR and Radio Morphologies of Nearby *Field* Galaxies

-0.871

0.909

0.328

.0 25.0

-0.836

1.004

0 463

-0.618

-1.158

1 83

0.491

-0.180

-0.852

- With Spitzer, first time a resolved study of the FIRradio correlation possible within a large number of nearby galaxies
 - Get at the physics driving the correlation!
 - Galaxies shown at matching resolution

Radio images have similar morphologies, but smoother due to diffusion of CR electrons. EJM+06a,b; EJM+08

- FIR emission more peaked than radio on arms/SF regions
 - **CR** electrons diffuse further than mfp of UV heating photons.
- Such signatures removed in residuals after smoothing the FIR disks appropriately!
 - > <u>Use smoothing kernel to infer physics of CR propagation in other galaxies!</u>

Image Smearing Analysis: (e.g. NGC 5194)

22cm Map

70µm

Maps

CR Propagation vs. Intensity of Star Formation

- Observed trend too steep to be explained by steadystate star formation
 - CRe⁻'s must be younger Galaxies with large values of Σ_{SFR} have likely undergone a recent episode of enhanced star formation
 - I is sensitive to SFHs
- Including Irr galaxies suggestive of CR escape
 Low *l* & SFR/area
- Edge-on's:
 - Vertical diffusion similar to radial diffusion (e.g., N4631 -> prominent halo)

Order of magnitude diffusion estimates

<u>Assume $U_{rad} \sim U_B = B^2/(8\pi)$ </u> Sync. losses > 1. $\langle U_{rad} \rangle \sim 4 \ge 10^{-13} \text{ ergs/ cm}^3 \text{ from TIR SB}$ **IC** losses > 2. $B \sim 9\mu G \rightarrow \langle U_{rad} \rangle \sim 2 \ge 10^{-12} \text{ ergs/cm}^3$ $\left(\frac{\tau_{\rm cool}}{\rm vr}\right) \sim 5.7 \times 10^7 \left(\frac{\nu_c}{\rm GHz}\right)^{-1/2} \left(\frac{B}{\mu \rm G}\right)^{1/2} \times \left(\frac{U_B + U_{\rm rad}'}{10^{-12} \rm \ ergs \ \rm cm^{-3}}\right)^{-1}$ $\left(\frac{l_{\text{cool}}}{\text{kpc}}\right) \sim 7 \times 10^{-4} \left(\frac{\tau_{\text{cool}}}{\text{vr}}\right)^{1/2} \left(\frac{\nu_c}{\text{GHz}}\right)^{1/8} \left(\frac{B}{\mu \text{G}}\right)^{-1/8}$ Random Walk Diffusion > 1. $\tau_{cool} \sim 110$ Myr; $l_{cool} \sim 6.8$ kpc

- > 2. τ_{cool} ~ 22 Myr; l_{cool} ~ 2.6 kpc
- > Both cases much l_{cool} much (> x3) larger than what we measure.
 - IC & synchrotron processes alone cannot explain structural differences between IR and RC maps
 - > Differences in CR population Ages! Use to characterize SFHs

Edge-On Systems: Studying Negative Feedback

Starburst winds are multiphase (e.g. Large synchrotron haloes):

- Arise from advected cosmic-ray electrons in large-scale magnetic field
- Implications for negative feedback effects: Is SF quenched by galactic CR winds (e.g. Socrates et al. 2008)?
 - > Need direct comparison with distribution/kinematics of warm molecular gas
 - Implications for high-z ULIRGs where we cannot study these processes in detail

FIR/Radio Spatial Distribution

Face-On Spiral

Edge-On Spiral

Vertical diffusion CRs occurs on similar timescale as those in disk

The Herschel EDGE on galaxy Survey (HEDGES)

NGC 891 NGC 3628 NGC 4244 NGC 4517 NGC 4565 NGC 4631

- Deep imaging in 6 bands between 70 500um, plus additional imaging from Spitzer IRAC and MIPS 24um, to measure dust halo SEDs.
 - Characterize dust content and processing in halos.
 - → + CHANG-ES (Irwin et al.) → investigate vertical CR prop. : $E \sim 3 \& 8 \text{ GeV}$
 - Full dust SED in halo to compare with radio properties
- All data taken before cryo ran out;
 - REU student (Jackie Pezzato now at CIT) started analysis of FIR SEDs

- Pieces of galaxies do not behave like galaxies:
 - FIR-Radio correlation varies significantly within galaxies which appears mainly driven by propagation of CRs.
- Using FIR image as a source function for CRs, can smooth maps to match radio morphologies to glean CR propagation physics
 - > Improvements in residuals by factors of $\sim x^2 3$.
 - Scale-length a dominant function of CR pop. age, rather than ISM conditions
- CR diffusion into the the halos of star-forming disks appears to occur on similar timescales as radial diffusion in the disk
 - However, much harder to account for CR diffusion into halo with single function compared with radially in disks.
- More work needed by full FIR-Radio SED analysis as function of vertical scale-height.
 - Such data now exists!